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Abstract 
Today, digital cameras and many handheld electronic devices 

contain small image displays. Predictive system image quality 
models are needed to facilitate the optimization of such systems.  
Therefore, the quality of small images was investigated as a 
function of the angular subtense of the displayed images for 
several important image quality attributes. At constant levels of 
physically measurable degradations, the perceived image quality 
losses increased with decreasing image size. Moreover, at constant 
size reduction, the largest degradation was observed for attributes 
involving spatial frequency distortion, followed by sharpness and 
noise; tonal clipping showed no size variation. All results were 
quantified in terms of 50% just-noticeable differences of quality 
loss for use in multivariate system image quality models. 

Introduction  
In connection with the development of multiresolution image 

formats for PhotoCD, FlashPix, and other applications, it was 
observed that small images looked less sharp than predicted based 
on the overall system modulation transfer function (MTF) and 
common acutance metrics, which were found to be good predictors 
of perceived sharpness for larger images [1]. A possible cause for 
this effect is that important detail in the images, e.g., eyes, hair, 
letters, and texture, decreases in proportion to the decreasing 
image size and thus becomes relatively more obscured if blurred. 
This effect is of particular interest today as small images have 
become ubiquitous on camera backs, cell phones, and other 
handheld devices. In order to optimize the overall quality of 
images displayed on such devices under a variety of system 
constraints (e.g., display resolution, cost, speed), it is necessary to 
trade off many different image quality attributes, such as 
sharpness, noise, aliasing, and compression artifacts, against each 
other. The goal of this investigation was to quantify the loss in 
image quality with image size at a given physically measurable 
level of degradation for a variety of different image quality 
attributes. Using these results, predictive image quality models can 
be developed for imaging systems that display small images.  

Theoretical Background 
As described previously [2a], the concept of a just-noticeable 

difference (JND) is central to our image quality framework. It 
allows us to describe the effect of all attributes on image quality in 
similar terms so that they can be rigorously combined into a 
prediction of overall quality in the presence of multiple attributes. 
A 50% JND of quality is defined as the stimulus difference that 
would lead to a 75%:25% outcome in a paired comparison task.  

One successful way to build up a comprehensive image 
quality model is to study many different perceptually independent 
image quality attributes in isolation, and to develop objective 
metrics, which are in turn based physical measurements, e.g., the 
system MTF for sharpness. An objective metric is a single number 
that may be determined through objective means and is correlated 

with a perceived attribute of quality in an image, accounting for its 
viewing conditions and the properties of the human visual system 
[2b].  For example, acutance metrics, which cascade the system 
MTF with the contrast sensitivity function of the human visual 
system, are good correlates of sharpness [3].   

Once the effect of the individual attributes on image quality, 
∆Qi, is known, either through experimentation, or from predictions 
based on the objective metrics, a Minkowski metric with a variable 
exponent nm is applied to predict the overall image quality 
degradation, ∆Qm, of a system containing multiple attributes [2c]: 
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where ∆Qmax is the most severe individual degradation. 
This approach allows us to optimize the overall image quality 

of complex imaging systems by trading off contributions from 
different attributes. For example, it is possible to compensate for 
unsharpness by applying unsharp masking, however, this may 
increase the perceived noise and may introduce edge artifacts 
caused by oversharpening. By obtaining image size-dependent 
corrections of the 50% JNDs of quality for the individual 
attributes, these powerful predictions can be extended to systems 
displaying small images.   

Experimental Design 
While it was desirable to include a wide variety of different 

image quality attributes in the study, the selection was limited by 
practical considerations, in particular, if the attribute could be 
simulated in isolation without causing image quality degradations 
of other attributes, and whether it was possible to generate a 
continuously varying series of image quality levels for the 
attribute. The attributes included in the study were: (1) 
unsharpness (Sh); (2) isotropic noise (N), giving a grainy, 
speckled, or salt-and-pepper appearance; (3) misregistration (MR), 
i.e., the imprecise alignment of the color planes of an image, 
leading to unsharpness or, in extreme cases, to superimposed sharp 
images of different color; (4) tonal clipping (TC), the irreversible 
loss of highlight or shadow detail caused by tonal limitations; (5) 
oversharpening (OS), which appears as harshness, edge overshoot, 
and/or auras caused by excessive frequency boost; and (6) 
reconstruction error (RE), i.e., high-frequency artifacts caused by 
poor interpolation methods such as pixel replication, which 
manifest themselves as ringing on edges, jaggies (a stair-step 
appearance in diagonal lines), and, in extreme cases, pixellization.   

In order to fully characterize the corrections required for 
small images, a size and magnitude series was generated for each 
attribute. The image size was characterized by the angular 
subtense, s, i.e., the angle in degrees subtended by the image 
diagonal, d, at the eye: 
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where v is the viewing distance. In our previous studies with larger 
images, 4 × 6-inch prints were viewed at a viewing distance of 16 
inches, resulting in a reference value of the angular subtense, s0 = 
25.4º. 

For the size series, the viewed angular subtense was reduced 
by factors of 2, 3, and 4. Three levels representing different 
severities of the artifact were presented at the medium size 
reduction by a factor of 3. The sharpness experiment was 
conducted at viewing distances of 20 and 40 inches to determine if 
the correction factor was a function of the angular subtense alone. 
If this were the case, a full-size image viewed at 40 inches should 
require the same correction as an image subsampled by a factor of 
two and viewed at half the distance. Table 1 shows the expected 
50% JNDs of quality loss of all experimental levels for large 
images viewed at the reference angular subtense, s0. Four scenes 
were selected for the evaluation of each attribute. They were 
chosen according to the classification into more or less sensitive 
scenes, which resulted from previous studies with the large 
images. Each set contained two average scenes, one scene that was 
less sensitive to the artifact, and one scene that was more sensitive. 
The data in Table 1 refer to the average scene.  

Table 1: Angular subtense and –50% JNDs of quality by attribute 
for levels 1–6; Sh: sharpness, N: noise, TC: tonal clipping, MR: 
misregisration, OS: oversharpening, RE: reconstruction error. 

 1 2 3 4 5 6 
 Viewing distance = 20 inches 
s/degrees 25.4 12.9 8.61 8.61 8.61 6.45 
Sh 5.43 5.11 5.09 1.52 8.90 5.00 
N 6.00 6.00 6.00 1.05 9.00 6.00 
TC 6.00 6.00 6.00 2.04 10.1 6.00 
MR 5.75 5.75 5.75 2.40 9.75 5.75 
RE 7.13 7.17 7.51 3.61 13.1 7.54 
OS 5.16 5.18 5.17 1.10 5.14 5.16 
 Viewing distance = 40 inches 
s /degrees 12.9 8.61 6.45 6.45 6.45 4.30 
Sh 3.86 3.77 3.74 0.43 7.66 3.71 

 

Image Evaluation 
The images were evaluated using the softcopy ruler 

technique. The test images and the ruler images, which represented 
a series of reference images of varying severity of the artifact 
under investigation, were displayed side by side on an IBM T-221 
LCD monitor with 200 pixels per inch (ppi) resolution, an NVidia 
Quatro FX 3000 graphics card, and 3840 × 2400 addressable 
pixels. The series of reference images was displayed at the 
reference angular subtense, s0 = 25.4°, and calibrated based on 
previous studies such that consecutive images varied by exactly 1 
50% JND of quality. In order to achieve this calibration, the MTF 
of the monitor was measured, the monitor was color-calibrated for 
a CIE Standard Illuminant D65 white point, and the viewing 
environment was tightly controlled in terms of viewing distance 
and luminance levels (the white point luminance of the monitor 
was set to 178 cd/m2, and the images were displayed using a 20% 

gray surround). A slider on the user interface allowed the user to 
quickly bring up consecutive ruler images and to compare them 
with the test images. Normally the judges are asked to match the 
quality of the test print with the quality of the ruler. In this case, 
however, they were instructed to match the appearance of the 
artifact in the test image with that of the ruler image. The goal was 
to obtain correction factors for different image quality attributes 
using rulers, which were previously calibrated in terms of 50% 
JNDs of quality. The calibration of the rulers eliminates the 
problem usually encountered in appearance matching, where such 
a technique produces attribute JNDs instead of quality JNDs [2d]. 

The presentation sequence of the images was randomized by 
scene and level. Approximately 10 judges drawn from the research 
community, and tested for visual acuity and color vision, 
participated in each of the attribute studies. 

Results and Discussion 
The data collected from the softcopy ruler workstation were 

calibrated in terms of 50% JNDs of quality, and the mean over all 
scenes and observers was taken. The additional quality degradation 
incurred by the smaller angle subtended by the test images was 
obtained by subtracting the predicted 50% JNDs of quality for 
images at the reference subtense, s0, from the corresponding JNDs 
obtained in the experiment. Figure 1 shows this difference as a 
function of the angular subtense for unsharpness and tonal 
clipping. 
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Figure 1. Additional quality degradation, ∆JND, as a function of the angle, s, 
subtended by the image diagonal. 

As discussed in the introduction, the additional quality loss 
for small images is mainly expected to be a perceptual effect that 
is caused as important detail in the images decreases in size and 
becomes more obscured by image structure artifacts. 
Consequently, no additional quality loss at smaller sizes was 
expected for color and tone attributes, e.g., for tonal clipping. The 



 

 

data in Fig. 1 confirm this hypothesis. However, significant 
additional quality loss was perceived for the unsharp small images. 
Figure 1 shows two sharpness data points for the three 
intermediate values of angular subtense. These points refer to the 
two different viewing distances and confirm that the effect is 
solely driven by the angle subtended by the image diagonal.   

In addition, the magnitude of the correction required at a 
given angular subtense, s, increases in proportion to the magnitude 
of the 50% JND quality loss, JND, observed for larger images 
viewed at the reference angular subtense, s0:  
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The attribute-specific parameters m, δ, and JND0, obtained by 
nonlinear regression, are summarized in Table 2. Figure 2 
illustrates that the measured corrections, ∆JND, for the small 
images are well predicted according by Eq. 4 in combination with 
Table 2.  

Table 2: Regression parameters for Eq. 4 by attribute. 
Attribute m δ JND0 
Sh 2.3772 0.1766 -0.1 
N 0.6340 0.3949 0.0 
MR 1.3066 0.5380 0.0 
RE 2.2669 0.4580 0.0 
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Figure 2. Measured image quality corrections vs predictions according to Eq. 
4 and Table 2 for all levels of four different attributes. The error bars 
correspond to the 95% confidence interval of the measured JNDs. 

The magnitude of the corrections depends on the type of 
attribute. No corrections were required for tonal clipping or 
oversharpening, which is a small correction to the sharpness metric 

(so neither is shown in Fig. 2). Small corrections were observed 
for noise. Larger corrections were required for sharpness-related 
attributes and misregistration. The largest corrections were found 
for an attribute that represented a more complex distortion of the 
spatial frequency spectrum of the image, reconstruction error. 

If the corrections are applied in JND space, it is expected that 
unstudied attributes can be treated like the most similarly studied 
attribute. The attributes studied can be classified into four 
categories: color and tone attributes, sharpness-related attributes, 
noise-related attributes, and attributes related to spectral distortion; 
it is expected that a common correction is required within a 
category. Such categorization of attributes is supported by the data 
for misregistration and unsharpness, which can be fit with a single 
set of regression parameters. Both attributes have a similar 
perceptual appearance at small degradations; small shifts between 
the color records, typical of misregistration, appear as unsharpness.  

Figure 3 provides an illustration of the required corrections as 
a function of the quality loss predicted for the reference subtense, 
s0, if the size of the displayed image is reduced threefold. The 
reference case is equivalent to viewing a 4 × 6-inch print at a 16-
inch viewing distance (s0 = 25.4°). The data from the sharpness 
experiment suggested some additional image quality loss for small 
images even if the equivalent larger images had no perceived 
degradation, described by the parameter JND0 in Table 2. The 
actual magnitude of this offset was calculated by setting JND to 
zero in Eq. 4, and amounted to –1.75 JNDs for the case shown in 
Fig. 3. There was no visual evidence, however, that any of the 
other attributes (noise etc.), which were below threshold for large 
images, went above the perceptual threshold for smaller images 
(JND0 = 0 for all other cases). This special treatment of sharpness 
is plausible, because some unsharpness is nearly always evident in 
pictorial images even at the highest quality levels, so it is generally 
suprathreshold and amenable to quality shifts.  
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Figure 3. JND corrections for 4 different attributes as a function of the quality 
loss for large images at the reference subtense, s0 (3X size reduction).  



 

 

The following example illustrates how the JND corrections 
derived in this experiment can be used in conjunction with the 
multivariate formalism to optimize overall image quality. Let us 
consider a hypothetical system, which displays images captured 
with a 5 Megapixel digital camera on a softcopy device. In the first 
case the image is interpolated by a factor of 0.67 and then 
displayed and viewed on a high-resolution 200 ppi LCD monitor at 
a distance of 24 inches. At a 10.82-inch image diagonal, this 
viewing environment corresponds to the reference angular 
subtense s0 = 25.4°. In the second case, after further prefiltration 
and downsampling by a factor of 3, the image is displayed on a 
LCD camera back with 200 ppi resolution and viewed at a distance 
of 14 inches. The angle subtended at the eye by this image is 
11.03°.  

Some additional improvement of the overall image quality 
can be made in both cases by adding an unsharp masking 
operation, and the goal is to optimize the boost factor and to assess 
the magnitude of the improvement. The relevant image quality 
attributes are unsharpness, chromatic aliasing, i.e., colored 
fringing, a result of undersampling by the camera color filter array, 
and oversharpening, which may be introduced by the unsharp 
masking operation.  
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Figure 4. Quality degradations caused by unsharpness, oversharpening, 
aliasing (A), and overall quality (T,sm) as a function of the unsharp masking 
boost factor  for small images (subtense s = 11.030). Thick solid line: 
predictions of overall image quality at the reference angular subtense s0 = 
25.40  (T,la).  

Figure 4 shows the predicted degradations in terms of 50% 
JNDs of quality for these attributes, as well as the multivariate sum 
corresponding to overall quality, calculated according to Eqs. 1 
and 2. The quality degradations for the larger image, displayed at 
the reference angular subtense, consist of some initial unsharpness 
and 1 JND of aliasing, which is essentially unaffected by the 
unsharp masking operation, because the aliased artifacts are low 

frequency. The thick, solid line in Fig. 4 denotes the overall 
quality predictions for this case. The sharpness loss can be fully 
recovered with a boost factor of 0.8. At this point the overall 
image quality has reached its maximum and further increases in 
sharpness associated with higher boost factors do not lead to 
improvements. At the modest boost levels shown in Fig. 4, 
oversharpening is not an issue for the larger image, although it will 
eventually decrease the overall image quality.  

For the small images, the image quality without additional 
sharpening is lower. This is mainly a result of the perceptual effect 
investigated in this study. Both sharpness and aliasing require 
additional corrections in JND space according to Eq. 4 for smaller 
size images. The regression parameters listed for reconstruction 
error in Table 2 were used for aliasing. The unsharp masking 
initially helps to recover some of the sharpness loss up to a boost 
factor of 0.5. As discussed, the JNDs for sharpness approach an 
asymptotic value below zero because of the additional quality 
offset discussed in connection with Table 2 and Fig. 3. At boost 
factors above 1.0, the overall image quality quickly deteriorates 
because of oversharpnening. Although no image size-dependent 
corrections are required in this case, oversharpening becomes more 
critical because of the additional downsampling and associated 
frequency remapping for the small image. This analysis shows that 
the selection of the correct unsharp masking boost factor is critical 
for the small image, while wider margins exist for the larger 
image.   

Conclusion 
At a constant, physically measurable level of image structure 

attributes, the perceived image quality decreases with image size, 
characterized by the angle subtended by the image diagonal at the 
eye. This effect is strongest for attributes involving spectral 
distortion, followed by sharpness-related attributes and noise 
attributes, while no effect is observed for color and tone-related 
attributes. The quantitative characterization of this effect 
performed in this study allows us to make predictions of overall 
quality for complex imaging systems displaying small images.   
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